

Mark Scheme (Results)

Summer 2013

GCE Statistics 3 (6691/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA037014
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks					
1.	Label females $1 - 100$ (or $0 - 99$) and males $1 - 300$ (or $0 - 299$)	B1					
	Using <u>random numbers</u> for <u>each group</u>						
	in range $1 - 100 (0 - 99)$ select 15 females and using $1 - 300 (\text{or } 0 - 299)$ select 45	B1					
	<u>males</u>						
		[Total 3]					
	Notes						
	1 st B1 for labelling\numbering\listing females and males	!					
	2 nd B1 for use of random numbers or "randomly select" in each group (may be impli	ed)					
	3 rd B1 for selecting the correct number of females and males						
	e.g. randomly select 45 males and 15 females scores 2 nd and 3 rd B marks since randoml selecting and the "each group" is implied, If using systematic sampling within each strata allow 1 st B1 and 3 rd B1 (if earned) but 2 nd B0						

Question Number	Scheme	Marks
2.	$X \sim N(40, 3^2)$ $\overline{X} \sim N(40, \frac{9}{n})$ (Condone $Y \sim N(40, \frac{9}{n})$	B1
	$P(\overline{X} > 42) = P(Z > \frac{42 - 40}{\sqrt{\frac{9}{n}}})$	M1
	$\frac{42 - 40}{\sqrt{\frac{9}{n}}} \ge 1.6449$	B1 dM1
	$n \ge 6.087$ $n = 7$	A1 [Total 5]
	1 st B1 for stating the correct distribution for \overline{X} . May be implied if correctly used in line 2 and no incorrect version seen elsew 1 st M1 for an attempt to standardise with 42, 40 and their $\sqrt{\frac{9}{n}}$, must have n . Allow 2 nd B1 for using $z = \pm 1.6449$ (or better) 2 nd dM1 Dep on 1 st M1 for forming an equation in n or \sqrt{n} . Allow "=" or "<" i.e. setting their standardised expression = their z value ($ z > 1.5$) A1 for $n = 7$ only The A1 must follow from correct working so e.g. $n < 6.087$ leading to $n = 7$	±

Question Number						Scheme	e					Ma	rks
3 (a)	Town Pop	<i>A</i> 1	В 2	<i>C</i> 3	<i>D</i> 4	<i>E</i> 5	<i>F</i> 6	<i>G</i> 7	<i>Н</i> 8	<i>I</i> 9	<i>J</i>		
	Empl	2	1	3	5	4	6	10	8	9	7	M1	
	$\frac{ d }{d^2}$	1 1	1	0	1 1	1	0	3	0	0	3 9		
	$\sum d^2 =$		1	U	1	1	0)	0	0	9	M1A	.1
	$r_s = 1 - \frac{1}{2}$	$\frac{6 \times 22}{10 \times 99}$										dM1	
	$=\frac{143}{163}$	$\frac{3}{5} = 0.86$	5Ġ							awrt 0.	867	A1	(5)
(b)	$H_0: \rho = CV = 0.6$		$\rho > 0$)								B1 B1	
	in critica	U	U		3	-						M1	
	evidence	e of <u>pos</u>	sitive co	rrelatio	n betwe	en popu	ılation a	nd no. o	f emplo	oyees		A1	(4)
(c)	CV = 0											B1	
	[not in c No evide		_	_		do not	reject H	[0]				B1	(2)
(d)	No evide Villages			_	_						-	B1 B1	
				1 1				•		i Cilipio	yees.	DI	(2)
ALT	Alternate Data pro suitable	bably r	not (biva	ariate) r	ormal t	herefore	e Spearr	nan's co		t is mor	e	[Tota	al 13]
	50700070	VIIVII VII	Proces			Notes							
(a)	1 st M1		-	-			_	inst the		ions			
	2^{nd} M1 1^{st} A1	for 2		$\sum a$	- (must	be using	g ranks)	it their	ranks				
	3^{rd} dM1			I1 for us	se of the	correct f	formula v	with their	$\sum d^2$				
					n expr' i				<u>_</u>				
(b)	1 st B1	for botl	h hypotl	heses in	terms o	of ρ. Η.	must b	e one tai	l and co	ompatih	le with t	heir raı	nking
								n their cv					6
	A1 for Mu	a correctst menti	ct contextion "pop	tualised ulation"	comme	nt that is . of emp	rejecting	g H ₀ and "posi	tive cor	relation"			
(c)	1 st B1 f	for 0.63	19 2 nd	B1 de	oes not	require	context	just no <u>r</u>	ositive	correla	tion mer	ntioned	
(d)	2 nd B1 (i)	no <u>line</u> for a se there i	ear relatecond co s a (non	ionship omment 1-linear)	or relating relation	(ii) pmog to Spe nship be	arman's etween <u>r</u>	anks	t) norm	al distril	oution		
	<u>or</u> (11)	data n	ot (Join	t) norm	al so Sp	earman	s is bet	ter					

Quest Num				Scheme			Marks		
4	(a)	$\frac{282 \times 100}{600}$ (Do not accept 282 – 114.2 – 90.2 – 30.6 (o.e.))							
	(b) (c)	9 2.5 or better			C	Do not accept 0.025)	B1 (1) B1		
	(d)	H ₀ : hair colour o			·	Do not accept 0.023)	(1) B1		
		observed expected	black 105 100	brown 282 300	red 48 50	blonde 165 150	B1expected		
		$\frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$ $\frac{\left(O_{i}^{2} - E_{i}\right)^{2}}{E_{i}}$	0.25	265.08	0.08	1.5	M1 A1		
		$\sum \frac{(O_i - E_i)^2}{E_i} = \frac{V - 3}{\text{cv is } 7.815}$ $[2.91 < 7.815] \text{ so}$ There is evidence	insufficient ev	idence to reject	H_0 or not significant	ficant	A1 B1 B1 dM1 A1 (9) [Total 12]		
		ast Data and a		Notes					
	(d)	1st B1 for both hypotheses. Must mention hair colour and ratio e.g. "hair colour in the given ratio" Allow use of ditto 2nd B1 for all 4 correct expected frequencies 1st M1 for at least 2 correct calculations from 3rd or 4th row 1st A1 for all correct calculations to at least 3sf if row 4 If awrt 2.91 is seen with no incorrect working award B1M1A1A1 2nd dM1 Dep on 1st M1 for a correct statement linking their test statistic and their cv 3rd A1 for a correct comment in context - must mention "hair colour" and "ratios" of e.g. "There is evidence of to support the given model" No follow through If hypotheses are the wrong way round score A0.							

Question Number	Scheme	Marks
5 (a)	$\overline{x} = \frac{1}{2} (118.8 + 121.2) = 120$	B1
	1.6449 (or better) "their 1.6449" $\frac{\sigma}{\sqrt{n}}$ = 121.2 – 120	B1 M1
	$\text{"their 2.3263"} \frac{\sigma}{\sqrt{n}} = 2.3263 \times \left(\frac{121.2 - 120}{1.6449}\right)$	B1 dM1
	So 98% C.I. = 120 ± 1.424= (118.3028, 121.699) awrt (118, 122)	A1 (6)
(b)	awrt $(118 \pi, 122 \pi)$ or $(371/372, 382/383)$	B1ft (1)
(c)	$P (All) = (0.98)^3 = 0.941$	M1 A1 (2)
		[Total 9]
	Notes	. 1.1
(a)	NB in part (a) only lose one of the B1 marks for not using the percentage points 1^{st} B1 for $\overline{x} = 120$ 2^{nd} B1 for 1.6449 or better in an attempt (could be 1.6449 $\sigma = k$ or even 1.6449 $\sigma^2 = k$ Condone strange notation for standard error (<i>E</i>) here if it is used correctly 1st M1 for an attempt to find "width" or "half-width" of a 90% CI ft their <i>z</i> value ($k = k = 121.2 - 120$ (o.e.) N.B. $k = 121.2 -$	z > 1.5) $(z > 2)$
(c)	M1 for a correct expression i.e. $(0.98)^3$ A1 for awrt 0.941	

Question Number	Scheme	Marks
6 (a)	Var $(X) = \frac{(a+5-a+1)^2}{12}$ [=3] $\overline{X} \sim N\left(a+2, \frac{3}{50}\right)$	M1
	$\overline{X} \sim N\left(a+2, \frac{3}{50}\right)$	A1, A1ft
a >		(3)
(b)	$17.2 - 1.96 \times \sqrt{\frac{3}{50}} < \mu < 17.2 + 1.96 \times \sqrt{\frac{3}{50}}$	B1
	130	M1
	$17.2 - 1.96 \times \sqrt{\frac{3}{50}} \le a + 2 \le 17.2 + 1.96 \times \sqrt{\frac{3}{50}}$	
	100	B1
	14.7 < a < 15.7	A1
		(4)
		[Total 7]
(a)	Notes M1 for a correct expression for $Var(X)$ in terms of a or $Var(X) = 3$	
(u)	1^{st} A1 for normal and correct mean must be $a + 2$	
	NB N(17.2,) is A0 and N(17.2, $\frac{3}{50}$) is M1A0A1	
	2^{nd} A1ft for correct Var(\overline{X}), i.e. (their "3")/50	
(b)	1 st B1 for correct use of $z = 1.96$ in an attempt e.g. $\overline{x} \pm z\sigma$ or $\overline{x} \pm z\sigma^2$	
	M1 for $17.2 \pm z \times \sqrt{\frac{"3"}{50}}$ where $ z > 1.5$ accept just + or just -	
	Answer of (16.7, 17.7) scores B1M1B0A0	
	2 nd B1 for either of the inequalities with $a+2$ and any z ($ z > 1.5$) or $a = 15.2 \pm z$	$\times \sqrt{\frac{"3"}{50}}$
	A1 for awrt 14.7 and 15.7	•

Question Number	Scheme	Marks
7 (a)	H_0 : $\mu_a = \mu_b$, H_1 : $\mu_a < \mu_b$	B1
	s.e. $=\sqrt{\frac{25^2}{100} + \frac{10^2}{150}}$, $z = \frac{67 - 60}{\sqrt{\frac{25^2}{100} + \frac{10^2}{150}}}$ $CR = 1.6449 \times \sqrt{\frac{25^2}{100} + \frac{10^2}{150}}$	M1,dM1
	$z = \pm 2.6616$ = ± 4.326 (awrt 2.66/4.33)	A1
	One tailed critical value $z = 1.6449$ (or prob of awrt 0.004 (<0.05)) [Condone 0.996 if compared correctly with 0.95 for the B1]	B1
	2.6616 > 1.6449 so] significant evidence to reject H ₀	dM1
	There is evidence that the amount of lead present in the soil has decreased.	A1ft (7)
(b)	CLT enables you to assume that means are normally distributed	B1 (1)
(c)	Have assumed $s^2 = \sigma^2 \underline{\text{or}}$ variance of sample = variance of population	B1
		(1) [Total 9]
	Notes	
(a)	1^{st} B1 for both hypotheses in terms of μ not words.	***
	Accept μ_1 , μ_2 etc if there is some indication of which is which e.g $X \sim N(67, 25^2)$ implies	X is "before".
	1 st M1 for attempt at s.e condone one number wrong or mis-matched variances i.e. $\sqrt{\frac{p}{q} + \frac{r}{s}}$ (3 of p,q,r & s correct) or $\sqrt{\frac{10^2}{100} + \frac{25^2}{150}}$	
	2^{nd} dM1 Dep on 1^{st} M1 for using their s.e. in correct formula for test statistic. Num of \pm (6 or for correct expression for CR	
	3^{rd} dM1 dep. on 2^{nd} M1 for a correct statement based on their normal cv (cv > 1.5) and their 2^{nd} A1ft for correct comment in context. Must mention "lead" or "soil" and "factory"	r test statistic ". Allow ft
	If hypotheses are the wrong way round score A0	
	If hypotheses are not for a difference between 2 means award A0	
(b)	B1 must mention <u>mean</u> and <u>normal</u> . In words or symbols e.g. $\bar{X} \sim N($	

Questio Numbe		Scheme	Marks
		$Let W = D_1 - D_2$	M1
		$W \sim N(0, 2.88)$	A1, A1
		$P(W >3) = 2 \times P(W>3)$	M1
		$=2\times P\left(Z>\frac{3-0}{\sqrt{2.88}}\right)$	dM1
		$= 2 \times P(Z > 1.76776)$	
		$= 2 \times (1 - 0.9616)$ $= 0.0768$ awrt 0.077	A1 (6)
	(b)	Let $T = 5C - 4D$ or $4D - 5C$ or $C - \frac{4}{5}D$ or $\frac{4}{5}D - C$	M1
		$T \sim N(\pm 4, 39.04)$ or $N(\pm 0.8, 1.5616)$	A1 A1
		$P(T < 0) = P\left(Z < \frac{0-4}{\sqrt{39.04}}\right) \text{ or } P\left(Z < \frac{0-0.8}{\sqrt{1.5616}}\right)$	M1
		= P(Z < -0.64018)	
		= (1 - 0.7389) $= 0.2611$ awrt 0.261	A1 (5)
	(c)	Let $P = D + D + D + D + D + D + B$	M1
	` ′	Let $Q = C + C + C + C + C + C + B$	
		$P \sim N(352, 13.64)$ and $Q \sim N(292, 8.84)$	A1, A1
		[Let $R = P - Q$] $R \sim N(\pm 60, 22.48)$	M1
		$P(R > 50) = P\left(Z > \frac{50 - 60}{\sqrt{22.48}}\right)$ = P(Z > -2.10)	dM1
		= 0.9821 awrt 0.982 ~ 0.983	A1
		NT. A	(6) [Total 17]
		Notes Award full marks in each part for a correct answer with no incorrect working the second secon	 19 Seen.
((a)	1^{st} M1 for explicitly defining a suitable W and attempt to find the distribution of W . May be implied by sight of N(0, 2.88)	ing seem
		1^{st} A1 for normal and mean of 0, 2^{nd} A1 for variance of 2.88. Award M1A1A1 for N(0, 2. 2^{nd} M1 for realising need $2 \times P(W > 3)$	
		3^{rd} dM1 Dep on 1^{st} M1 for standardising with 3, 0 and their s.d. Must lead to $P(Z > +v)$	(e) (o.e.)
	(b)	1^{st} M1 for explicitly defining a suitable T but may be implied by sight of one of these	normale
'	(D)	1 st A1 for normal and correct mean, 2 nd A1 for correct variance. Accept awrt 3sf i.e.	e. 39.0, 1.56
		2^{nd} M1 for standardising with 0 and their mean and their s.d. Must lead to P(Z < -ve) (
	(c)	1^{st} M1 for explicitly defining a correct P or Q. May be implied by a correct distributi	on for P or Q
		1^{st} A1 for a correct distribution for $P = 2^{nd}$ A1 for a correct distribution for Q	
		2^{nd} M1 for attempting R and obtaining its distribution- ft their P and Q means and va	
		3^{rd} dM1 for attempting P($R > 50$) and standardising with 50 and their E(R) and their	$\sqrt{\operatorname{Var}(R)}$
		Dependent on 2^{nd} M1. Must lead to a $P(Z > -ve)$ (o.e.)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA037014 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

